National Repository of Grey Literature 33 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Modal analysis of vocal folds models with descrete parameters
Lekeš, Filip ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
Bachelor’s thesis deals with modal analysis of computed models of human vocal folds. It’s about finite element and analytical model where values first eigenfrequencies come under male vocal folds. Research part applies to biomechanics of vocal the human voice, which is followed by an overview of computational models. Finite element model is completely created and solved by ANSYS Workbench commercial program, which uses the finite element method to simulate a problem. Solution of analytical model uses freely available Python programming language. Analysis of the results and comparison of approaches belong to main objectives of the presented work. The proposed analytical model can serve future students for detailed understanding of human vocal oscillations.
Using finite element method for modelling of movement and stress of vocal folds during setting to phonation position
Šíbl, Michal ; Šidlof,, Petr (referee) ; Švancara, Pavel (advisor)
This Master´s thesis deals with use of finite element method for modeling motion and stress of vocal folds during setting to phonation position. The thesis contains a description of the relevant anatomical structures and of the closely related formation of the human voice. A list of some previously published models of the function of human vocal folds follows. A part of my work was to create a model of geometry of the larynx using CATIA V5 and PTC Creo 2.0 on the basis of data acquired by MRI (magnetic resonance imaging). After that the model was converted into the calculation system Ansys Workbench 15.0 and, for solving contact problems, into Ansys Classic 15.0. To solve given problems, these programs use the finite element method (FEM). Solution was carried out for six different variants simulating individual motions of cartilages, corresponding to the activation of individual muscles. For each variant, the movements and stresses in the soft tissue of the vocal folds were evaluated. For variants with activation of IA, TA and LCA muscle it was also evaluated the contact pressure between the vocal folds. Finally, the thesis mentions the preparation of the model for the activation of the vocal folds movement by the muscles of the larynx.
Computational modeling of the influence of geometry and material model on vibration of human vocal folds
Michálek, Mojmír Cyril ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
This theses focuses on a research of existing material and geometry models. Its effort is to gather and organize gathered information thus so that overview of geometries and material models was created. Furthermore an influence of Young’s modulus in tension of particular vocal fold layers was investigated using modal analysis. This was made for one three-dimensional (3D) and two two-dimensional (2D) geometry models.
Computational modelling of stress and strain of the human vocal folds during setting up to phonation position
Sádovská, Terézia ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
This master‘s thesis deals with computational modelling of human vocal folds in phonation position using finite element method. There are described larynx anatomy, voice generation theories and overview of so far published computational models of vocal folds. Next part of the paper deals with a redesign of vocal folds and soft tissues‘ geometry, creation of finite element mesh and implementation of active stress in thyroarytenoid muscle. The problem was solved using Ansys 19.2 software. Computation of stress and deformation of soft tissues in phonation position has been made for 7 variations with different combination of active cartilages and muscles. Lastly, there was evaluated an effect of different cartilages and active muscle stress to final stress and deformation of soft tissues of vocal folds.
Computational modelling of interaction between oscillating vocal folds and air flow
Pavlica, Ondřej ; Matug, Michal (referee) ; Švancara, Pavel (advisor)
Master thesis deals with creating numerical model of the human vocal folds. Calculation algorithm includes interaction between vocal chords and the air flow. Modal analysis of structural and acoustic environment, backround research of vocal folds function and summary of some published overviews of numerical models are parts of this work. Analysis of the results achieved by the numerical simulations and calculations are focused on the pressure and velocity conditions in the areas under vocal folds, between vocal folds and above vocal folds. Movement and stress analysis of individual layers of vocal folds has been made. Impact of tissue thickness on resulting behaviour has been assessed.
Computational modelling of human voice propagation through the vocal tract and in space around the head
Švarc, Martin ; Pellant, Karel (referee) ; Švancara, Pavel (advisor)
The following master thesis deals with creating a computational model for acoustic wave distribution by the human vocal tract and then the space around a human head. Detailed mapping of the sound field around the human head is important for more accurate measurement of the human voice. Part of this work is the creation of three-dimensional finite element model of the human head and the vocal tract during phonation of the vowel /:a/ based on the data from the computational tomography. Further the literature search of the function of the vocal tract, biomechanics of the making of the human voice, an overview of the computational models so far published in the literature and in literature reported measurements of the distribution of the human voice by the vocal tract and then in the space around the head . The following is the actual numerical solution of the acoustic waves distribution from the vocal cords through the vocal tract and then the space around the human head when thinking of acoustic absorption on the walls of the vocal tract and on the skin of the head for different types of waking of the model. The results are compared with previously published measurements of the distribution of the human voice and mainly the distortion of the frequency spectra at each specific node in the space around the head and in its vicinity of where the sensor microphones are typically placed are analyzed. Results of the computational modeling will eventually be used for frequency correction for various positions of the microphones scanning the voice distribution in its diagnosis, speech or singing.
Finite element modelling of pathological changes in human vocal folds tissue and their influence on videokymograph
Martínek, Tomáš ; Matug, Michal (referee) ; Švancara, Pavel (advisor)
Master´s thesis deals with creating planar computational model of human folds, involving fluid-structure interaction. With this model, the influence of changes in vocal folds tissue layers (stiffness, thickness) and their effects on the videokymograph image are studied. Analysis of the results also deals with the evaluation of pressure at selected points below, between and above the vocal folds. The results indicate a possible similarity with the behavior of human vocal folds with pathology. Background research of vocal folds function, an overview of vocal folds pathology and summary of computational models are included.
Computational modelling of mucosal wave propagation in human vocal folds
Vintr, Lukáš ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
The aim of this thesis is to analyze the influence of material parameters of individual layers of vocal cord tissue on the propagation of mucosal waves on the vocal cord model. First, a brief overview of current approaches in experimental and computational modeling of mucosal wave propagation is given on the basis of the literature. Furthermore, the influence of the modulus of elasticity in the tensile epithelium and the surface lamina of propria on the natural frequencies and shapes of oscillations is investigated by means of modal analysis. Mucosal wave propagation was then analyzed using transient analysis in response to the vocal cords to shock excitation by force on the lower part of the vocal cords. The influence of material parameters on the amplitude and speed of mucosal wave propagation over the vocal cord surface was evaluated. In the end of this thesis, the recommendation is given, according to the recorded results, to use lower modulus of elasticity in tension of the surface lamina propria in models with interaction with air flow, because there is much more pronounced mucosal wave propagation corresponding to the behavior of real human vocal cords.
Mass Models of the Vocal Folds under Harmonic Excitation
Řeřuchová, Ivana ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
This bachelor’s thesis belongs to the branch of bioacoustics and biomechanics. It deals with the modelling of simple analytic models of vocal folds, specifically with their forced oscillation caused by a harmonic excitation force. The thesis also includes an anatomy of the respiratory tract and the vocal system, a description of the principal theories of voice production, and an overview of the vocal folds’ mass models.
Finite element modal analysis of a silicone vocal fold filled with fluid
Hájek, P. ; Radolf, Vojtěch ; Horáček, Jaromír ; Švec, J. G.
A three dimensional (3D) finite element (FE) model of a silicone vocal fold (VF) filled with fluid is presented here. The silicone part of the model is based on partial differential equations of the continuum mechanics and consider large deformations. The fluid domain encapsulated in the silicone VF is defined semianalytically as a lumped-element model describing the fluid in hydrostatic conditions. The elongated and pressurized silicone VF was subjected to perturbed modal analysis. Results showed that the choice of the fluid inside the VF substantially influences the natural frequencies. Namely, the water-filling lowers the natural frequencies approximately by half over the air-filling. Besides, the procedure of reverse engineering for obtaining the geometry of the VF from already 3D-printed mold is introduced.

National Repository of Grey Literature : 33 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.